Number System

01 Number System

CLASSIFICATION OF NUMBERS

class 9 math

Natural numbers: 1, 2, 3, 4… MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeymaiaabYcacaqGGaGaaeOmaiaabYcacaqGGaGaae4maiaabYca caqGGaGaaeinaiaabAciaaa@3E67@

Whole numbers: 0, 1, 2, 3, 4,… MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeimaiaabYcacaqGGaGaaeymaiaabYcacaqGGaGaaeOmaiaabYca caqGGaGaae4maiaabYcacaqGGaGaaeinaiaabYcacaqGMacaaa@411B@

Integers …-4, -3, -2, -1, 0 , 1, 2, 3, 4… MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOjGiaab2cacaqG0aGaaeilaiaabccacaqGTaGaae4maiaabYca caqGGaGaaeylaiaabkdacaqGSaGaaeiiaiaab2cacaqGXaGaaeilai aabccacaqGWaGaaeiiaiaabYcacaqGGaGaaeymaiaabYcacaqGGaGa aeOmaiaabYcacaqGGaGaae4maiaabYcacaqGGaGaaeinaiaabAciaa a@4CB6@

Rational numbers: A number   “ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyyaaaa@37B6@  ” is called rational number if “ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyyaaaa@37B6@  ” can be written as p q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iCaaqaaiaadghaaaaaaa@38CF@ ,

Where q0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabghacqGHGj sUcaqGWaaaaa@3A42@ .

*Every rational number has terminating  or recurring decimalexpansion.

e.g 3 4  = 0.75,  1 3  = 0.33333 = 0. 3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae 4maaqaaiaabsdaaaGaaeiiaiaab2dacaqGGaGaaeimaiaab6cacaqG 3aGaaeynaiaabYcacaqGGaWaaSaaaeaacaqGXaaabaGaae4maaaaca qGGaGaaeypaiaabccacaqGWaGaaeOlaiaabodacaqGZaGaae4maiaa bodacaqGZaGaaeiiaiaab2dacaqGGaGaaeimaiaab6cadaqdaaqaai aabodaaaaaaa@4B22@

Irrational numbers: Irrational numbers can not be expressed as p q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae iCaaqaaiaabghaaaaaaa@38CB@  form. Numbers of the type 2 5 3 , π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaae OmaaWcbeaakiaabYcacaqGGaWaaOqaaeaacaqG1aaaleaacaqGZaaa aOGaaeilaiaabccacaqGapaaaa@3D2B@  are called irrational numbers.

*Every irrational number has non-terminating,non recurringdecimal expansion.

e.g 1) 0.052631578947368421052631578947368421…, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeimaiaab6cacaqGWaGaaeynaiaabkdacaqG2aGaae4maiaabgda caqG1aGaae4naiaabIdacaqG5aGaaeinaiaabEdacaqGZaGaaeOnai aabIdacaqG0aGaaeOmaiaabgdacaqGWaGaaeynaiaabkdacaqG2aGa ae4maiaabgdacaqG1aGaae4naiaabIdacaqG5aGaaeinaiaabEdaca qGZaGaaeOnaiaabIdacaqG0aGaaeOmaiaabgdacaqGMaIaaeilaaaa @537C@

       2) 0.010010001... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiaac6cacaaIWaGaaGymaiaaicdacaaIWaGaaGymaiaaicda caaIWaGaaGimaiaaigdacaGGUaGaaiOlaiaac6caaaa@40E1@

Real numbers:Real numbers are rational and irrational numbers together.

Equivalent fractions:

*Number 3 4  =  12 16  =  15 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae 4maaqaaiaabsdaaaGaaeiiaiaab2dacaqGGaWaaSaaaeaacaqGXaGa aeOmaaqaaiaabgdacaqG2aaaaiaabccacaqG9aGaaeiiamaalaaaba GaaeymaiaabwdaaeaacaqGYaGaaeimaaaaaaa@4227@  =….  are called equivalent fractions.

More about real numbers

* There are infinitely many rational numbers between two integers.

e.g.  2.1, 2.2, 2.3, 2.4,… MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOmaiaab6cacaqGXaGaaeilaiaabccacaqGYaGaaeOlaiaabkda caqGSaGaaeiiaiaabkdacaqGUaGaae4maiaabYcacaqGGaGaaeOmai aab6cacaqG0aGaaeilaiaabAciaaa@44AE@  lie between the integers 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOmaaaa@3787@  and 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4maaaa@3788@ .

*There are infinitely many rational numbers between two irrational numbers.

e.g.between 2 1.41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaae OmaaWcbeaakiabgIKi7kaabgdacaqGUaGaaeinaiaabgdaaaa@3C2F@  and 3 1.71 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaaG 4maaWcbeaakiabgIKi7kaabgdacaqGUaGaae4naiaabgdaaaa@3C3A@ , lie the numbers  1.42, 1.521, 1.522, 1.523,… MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeymaiaab6cacaqG0aGaaeOmaiaabYcacaqGGaGaaeymaiaab6ca caqG1aGaaeOmaiaabgdacaqGSaGaaeiiaiaabgdacaqGUaGaaeynai aabkdacaqGYaGaaeilaiaabccacaqGXaGaaeOlaiaabwdacaqGYaGa ae4maiaabYcacaqGMacaaa@49A6@

*There are infinitely many irrational numbers between two rational numbers.

e.gBetween 2and 3 lie the irrational numbers 7 , 17 3 , 54 4 ,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaaG 4naaWcbeaakiaacYcacaaMc8UaaGPaVpaakeaabaGaaGymaiaaiEda aSqaaiaaiodaaaGccaGGSaGaaGPaVlaaykW7daGcbaqaaiaaiwdaca aI0aaaleaacaaI0aaaaOGaaiilaiaaykW7caGGUaGaaiOlaiaac6ca aaa@4855@

Number line:

Every point on line, there can be assigned a real number.

Hence the line is called number line.

(fig of no. line)

Operations on Real numbers:

 1) Addition and subtraction of rational numbers with irrational numbers is irrational number.

      If P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeiuaaaa@37A5@  is rational number, Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyuaaaa@37A6@  is irrational number, then P + Q, P - Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiuaiaabccacaqGRaGaaeiiaiaabgfacaqGSaGaaeiiaiaabcfa caqGGaGaaeylaiaabccacaqGrbaaaa@3F5C@  are is irrational number.

      e.g. 2 +  3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabkdacaqGGa Gaae4kaiaabccadaGcaaqaaiaabodaaSqabaaaaa@3A4E@  is irrational number. It is addition of 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOmaaaa@3787@  (rational) and 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaae 4maaWcbeaaaaa@37A5@  (irrational number).

 2) Multiplication and division of a rational and an irrational numbers mustbeanirrational number.

      P×Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabcfacqGHxd aTcaqGrbaaaa@3A92@  isirrational number.

      e.g. 2× 3  = 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabkdacqGHxd aTdaGcaaqaaiaabodaaSqabaGccaqGGaGaaeypaiaabccacaqGYaWa aOaaaeaacaqGZaaaleqaaaaa@3E07@

3)   Addition or subtraction of  two irrational number is irrational number.

      If Q and R are two is irrational numbers, then Q + R.Q - R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyuaiaabccacaqGRaGaaeiiaiaabkfacaqGUaGaaeyuaiaabcca caqGTaGaaeiiaiaabkfaaaa@3EBF@  are irrational numbers.

      e.g. 5  + 2 5  = 3 5 2  +  7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaae ynaaWcbeaakiaabccacaqGRaGaaeiiaiaabkdadaGcaaqaaiaabwda aSqabaGccaqGGaGaaeypaiaabccacaqGZaWaaOaaaeaacaqG1aaale qaaOGaaeilaiaabccadaGcaaqaaiaabkdaaSqabaGccaqGGaGaae4k aiaabccadaGcaaqaaiaabEdaaSqabaaaaa@43C5@

4)  Multiplication or division of two irrational numbers will be either rational or irrational.

      R×Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabkfacqGHxd aTcaqGrbaaaa@3A94@  may result in rational or irrational numbers.

      e.g 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaaO aaaeaacaqGYaaaleqaaaGcbaWaaOaaaeaacaqGZaaaleqaaaaaaaa@388F@  is irrational,  it is division of 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOmaaaa@3787@  irrational numbers.

      3 3  = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaaO aaaeaacaqGZaaaleqaaaGcbaWaaOaaaeaacaqGZaaaleqaaaaakiaa bccacaqG9aGaaeiiaiaabgdaaaa@3B54@  is rational number,it is division of 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jc9qqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOmaaaa@3787@  irrational numbers.

Rationalise:

Rationalising factor of a +  b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabggacaqGGa Gaae4kaiaabccadaGcaaqaaiaabkgaaSqabaaaaa@3AAC@  is a -  b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabggacaqGGa GaaeylaiaabccadaGcaaqaaiaabkgaaSqabaaaaa@3AAE@ .

So 1 a +  b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae ymaaqaaiaabggacaqGGaGaae4kaiaabccadaGcaaqaaiaabkgaaSqa baaaaaaa@3B70@

       = a -  b ( a +  b )( a -  b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae yyaiaabccacaqGTaGaaeiiamaakaaabaGaaeOyaaWcbeaaaOqaamaa bmaabaGaaeyyaiaabccacaqGRaGaaeiiamaakaaabaGaaeOyaaWcbe aaaOGaayjkaiaawMcaamaabmaabaGaaeyyaiaabccacaqGTaGaaeii amaakaaabaGaaeOyaaWcbeaaaOGaayjkaiaawMcaaaaaaaa@45A0@  (rationalising)

      =  a -  b . a 2  - b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae yyaiaabccacaqGTaGaaeiiamaakaaabaGaaeOyaaWcbeaakiaac6ca aeaacaqGHbWaaWbaaSqabeaacaqGYaaaaOGaaeiiaiaab2cacaqGGa GaaeOyaaaaaaa@4025@

Laws of exponents:

      i) a p  × a q  = a p + q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabggadaahaa WcbeqaaiaabchaaaGccaqGGaGaae41aiaabccacaqGHbWaaWbaaSqa beaacaqGXbaaaOGaaeiiaiaab2dacaqGGaGaaeyyamaaCaaaleqaba GaaeiCaiaabccacaqGRaGaaeiiaiaabghaaaaaaa@4483@

      ii) ( a p ) q  = a pq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaae yyamaaCaaaleqabaGaaeiCaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaeyCaaaakiaabccacaqG9aGaaeiiaiaabggadaahaaWcbeqaai aabchacaqGXbaaaaaa@4094@

iii) a p a q  = a p - q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae yyamaaCaaaleqabaGaaeiCaaaaaOqaaiaabggadaahaaWcbeqaaiaa bghaaaaaaOGaaeiiaiaab2dacaqGGaGaaeyyamaaCaaaleqabaGaae iCaiaabccacaqGTaGaaeiiaiaabghaaaaaaa@41F5@

iv) a p · b p  =  ( ab ) p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabggadaahaa WcbeqaaiaabchaaaGccqWIpM+zcaqGIbWaaWbaaSqabeaacaqGWbaa aOGaaeiiaiaab2dacaqGGaWaaeWaaeaacaqGHbGaaeOyaaGaayjkai aawMcaamaaCaaaleqabaGaaeiCaaaaaaa@43D9@

      v) a n  =  ( a ) 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqpG0df9frFj0=yqpe ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakeaabaGaae yyaaWcbaGaaeOBaaaakiaabccacaqG9aGaaeiiamaabmaabaGaaeyy aaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaqGXaaabaGaae OBaaaaaaaaaa@3F23@

Start your learning Journey !

Tutormate-googleplay
Tutormate-AppleStore
Get SMS link to download the app