support@tutormate.in   022 6236 4602
 

Lines and Angles

Tutormate > CBSE Syllabus-Class 9th Maths > Lines and Angles

06 Lines and Angles

LINES AND ANGLES

Collinear points:

If three or more points lie on same line they are called collinear points.

 

 

Angle: Angle is forms when two rays originate from same endpoint.

 

 

Vertex: The end point of angle is called vertex.

 

 

Arms: The rays making an angle are called the arms.

 

 

Adjacent angles:

Two angles are called adjacent angles if they have a common vertex, a common arm, and non-common arms are on different sides of the common arms.

 

 

Linear pair angles:

If for adjacent angles, the non common pair rays form a line, then angles so formed are

called angles of linear pair.

 

 

Linear pair Axiom:

i)If a ray stands on a line, then sum of two adjacent angles so formed is 180 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiI dacaaIWaWaaWbaaSqabeaacaaIWaaaaaaa@3914@ .

ii)If the sum of two adjacent angles 180 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiI dacaaIWaWaaWbaaSqabeaacaaIWaaaaaaa@3914@ ,then a ray stands on a line.

 

 

Vertically Opposite angles :

When two lines AB and CD intersect each other, AOC MathType@MTEF@5@5@+= feaagKart1ev2aaaMfdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb90qG0di9XvyUDgBLbci7j0te1hatCvAUfeBSjuyZL2yd9gzLbvy Nv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb ItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qq aqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pg eaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqa aabaaaaaaaaapeGaeyiiIaTaamyqaiaad+eacaWGdbaaaa@4A82@ and BOD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiiIaTaamOqaiaad+eacaWGebaaaa@3A0D@ are called vertically opposite

angles.

 

 

 

Theorem:

If two lines intersect each other, then the verically opposite angles angles are equal.

Given: AB, CD are two lines which intersect at point O.

 

To prove:
AOC=BOD MathType@MTEF@5@5@+= feaagKart1ev2aaaMfdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb90qG0di9XvyUDgBLbci7j0te1hatCvAUfeBSjuyZL2yd9gzLbvy Nv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb ItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qq aqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pg eaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqa aabaaaaaaaaapeGaeyiiIaTaamyqaiaad+eacaWGdbGaeyypa0Jaey iiIaTaamOqaiaad+eacaWGebaaaa@4F8A@

AOD=BOC MathType@MTEF@5@5@+= feaagKart1ev2aaaMfdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb9erG0di9XvyUDgBLbci7j0td1hatCvAUfeBSjuyZL2yd9gzLbvy Nv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb ItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qq aqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pg eaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqa aabaaaaaaaaapeGaeyiiIaTaamyqaiaad+eacaWGebGaeyypa0Jaey iiIaTaamOqaiaad+eacaWGdbaaaa@4F8A@

Proof:

AOC+AOD= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb90qGSci9XvyUDgBLbci7f0tebspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam yqaiaad+eacaWGdbGaey4kaSIaeyiiIaTaamyqaiaad+eacaWGebGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5ADD@ (Linear pair axiom)….1

AOD+BOD= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb9erGSci9XvyUDgBLbci7j0tebspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam yqaiaad+eacaWGebGaey4kaSIaeyiiIaTaamOqaiaad+eacaWGebGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5AE1@ (Linear pair axiom)….2

Adding st. 1 and st. 2

AOC+AOD=AOD+BOD MathType@MTEF@5@5@+= feaagKart1ev2aaaMffvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb90qGSci9XvyUDgBLbci7f0tebspG0hxH52zSvgiGSxqpreiRasF CfMBNXwzGaYEc9er9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1 wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0ev GueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiabgcIiqlaadgeacaWGpbGaam4qaiabgUcaRiabgcIiqlaadgea caWGpbGaamiraiabg2da9iabgcIiqlaadgeacaWGpbGaamiraiabgU caRiabgcIiqlaadkeacaWGpbGaamiraaaa@6324@ (From 1 and 2)

AOC+BOD MathType@MTEF@5@5@+= feaagKart1ev2aaaMfdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb90qGSci9XvyUDgBLbci7j0te1hatCvAUfeBSjuyZL2yd9gzLbvy Nv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb ItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qq aqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pg eaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqa aabaaaaaaaaapeGaeyiiIaTaamyqaiaad+eacaWGdbGaey4kaSIaey iiIaTaamOqaiaad+eacaWGebaaaa@4F54@ Proved.

Similarly, we can prove

AOD=BOC MathType@MTEF@5@5@+= feaagKart1ev2aaaMfdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEb9erG0di9XvyUDgBLbci7j0td1hatCvAUfeBSjuyZL2yd9gzLbvy Nv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb ItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qq aqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pg eaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqa aabaaaaaaaaapeGaeyiiIaTaamyqaiaad+eacaWGebGaeyypa0Jaey iiIaTaamOqaiaad+eacaWGdbaaaa@4F8A@

Parallel lines and transversal:

1) Corresponding angles: When a transversal intersects two parallel lines, Corresponding angles are angles which lie on same side of transversal and both lie above or below the two lines.

1) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGe datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGym aaaa@421F@ and 5 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGu datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGyn aaaa@4227@
2) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGi datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGOm aaaa@4221@ and 6 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGy datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGOn aaaa@4229@
3) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGq datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGin aaaa@4225@ and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGG datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGio aaaa@422D@
4) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGm datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaG4m aaaa@4223@ and 7 MathType@MTEF@5@5@+= feaagKart1ev2aaaM9bvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YE30hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1B TfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaG qiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea Y=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaae aabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTa aG4naaaa@4346@

2) Alternate angles:

1) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGq datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGin aaaa@4225@ and 6 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGy datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGOn aaaa@4229@
2) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGm datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaG4m aaaa@4223@ and 5 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGu datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGyn aaaa@4227@

3) Interior angles:

1) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGq datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGin aaaa@4225@ and 5 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGu datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGyn aaaa@4227@
2) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGm datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaG4m aaaa@4223@ and 6 MathType@MTEF@5@5@+= feaagKart1ev2aaaMXbvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGy datCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVC I8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=bi LkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabi GaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaaGOn aaaa@4229@

 

 

Corresponding angle axiom:

1) If a transversal intersects two parallel lines, then each pair of corresponding angles equal.

2) If a transversal intersects two lines such that a pair of corresponding angles is equal, then two lines are parallel to each other.

 

 

Theorem: If a transversal intersects two parallel lines then, each pair of alternate angle is equal.

Given:

ABCD MathType@MTEF@5@5@+= feaagKart1ev2aaaMncvLHfij5gC1rhimfMBNvxyNvgabjexWfMCHX gBLXgiGmeramXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz 3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYf gasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXd d9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9 adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG bbGaamOqaiablwIiqjaadoeacaWGebaaaa@4652@ , PQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuaiaadgfaaaa@37B6@ is transversal.

To prove:

46 MathType@MTEF@5@5@+= feaagKart1ev2aaaMbdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YE00hxJ9MBNbcxH52zSvgiGSNn9bWexLMBbXgBcf2CPn2qVrwzqf2z LnharuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4 uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea 0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=Jbb G8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaa qaaaaaaaaaWdbiabgcIiqlaaisdacqGHfjcqcqGHGic0caaI2aaaaa@4CD6@ or ASTSTD MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEbnfv9X1yV52zGWvyUDgBLbci7nfve1hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaeyiiIaTaamyqaiaadofacaWGubGaeyyrIa KaeyiiIaTaam4uaiaadsfacaWGebaaaa@51B6@

35 MathType@MTEF@5@5@+= feaagKart1ev2aaaMPcvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGm dxJ9MBNbcxH52zSvgi1aWexLMBbXgBcf2CPn2qVrwzqf2zLnharuav P1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0 evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=J c9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFv e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaa aaWdbiabgcIiqlaaiodacqGHfjcqcqGHGic0caaI1aaaaa@4A9C@ or BSTSTC MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEcnfv9X1yV52zGWvyUDgBLbci7nfvd1hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaeyiiIaTaamOqaiaadofacaWGubGaeyyrIa KaeyiiIaTaam4uaiaadsfacaWGdbaaaa@51B6@

Proof :
15 MathType@MTEF@5@5@+= feaagKart1ev2aaaMPcvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGe dxJ9MBNbcxH52zSvgi1aWexLMBbXgBcf2CPn2qVrwzqf2zLnharuav P1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0 evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=J c9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFv e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaa aaWdbiabgcIiqlaaigdacqGHfjcqcqGHGic0caaI1aaaaa@4A98@ or PSASTC MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEqnvq9X1yV52zGWvyUDgBLbci7nfvd1hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaeyiiIaTaamiuaiaadofacaWGbbGaeyyrIa KaeyiiIaTaam4uaiaadsfacaWGdbaaaa@51AC@ (By corresponding axiom).(1)

But 13 MathType@MTEF@5@5@+= feaagKart1ev2aaaMPcvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGe dxJ9MBNbcxH52zSvgiZaWexLMBbXgBcf2CPn2qVrwzqf2zLnharuav P1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0 evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=J c9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFv e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaa aaWdbiabgcIiqlaaigdacqGHfjcqcqGHGic0caaIZaaaaa@4A94@ or PSABST MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEqnvq9X1yV52zGWvyUDgBLbci7j0uu1hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaeyiiIaTaamiuaiaadofacaWGbbGaeyyrIa KaeyiiIaTaamOqaiaadofacaWGubaaaa@51AA@ (Vertically opposite angle)….(2)

53 MathType@MTEF@5@5@+= feaagKart1ev2aaaMPcvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGu dxJ9MBNbcxH52zSvgiZaWexLMBbXgBcf2CPn2qVrwzqf2zLnharuav P1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0 evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=J c9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFv e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaa aaWdbiabgcIiqlaaiwdacqGHfjcqcqGHGic0caaIZaaaaa@4A9C@ or STCBST MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEtr1q9X1yV52zGWvyUDgBLbci7j0uu1hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaeyiiIaTaam4uaiaadsfacaWGdbGaeyyrIa KaeyiiIaTaamOqaiaadofacaWGubaaaa@51B6@ (From 1 and 2).

Proved.

 

 

 

Theorem 2:

If a transversal intersects two Parallel Lines then each pair of interior angles on the same

side of transversal is supplementary.

Given:

ABCD MathType@MTEF@5@5@+= feaagKart1ev2aaaMDcvLHfij5gC1rhimfMBNvxyNvga7fKq9XfCHj xySXwzSbci7ner9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wz ZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGu eE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vq aqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fv e9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWd biaadgeacaWGcbGaeSyjIaLaam4qaiaadseaaaa@4846@ , PQ MathType@MTEF@5@5@+= feaagKart1ev2aaaMHbvLHfij5gC1rhimfMBNvxyNvga7bvu9bWexL MBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wBH5garmWu 51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi=xH8 yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj 0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGaca GaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadcfacaWGrbaaaa@4052@ is transversal.

To prove :

5+4= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMjevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YE1aYkG0hxH52zSvgiGShnG0diXGdmG0hi71NxCnwAYngiGShi9bWe xLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wBH5garm Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi=x H8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYR qj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabgcIiqlaaiwdacq GHRaWkcqGHGic0caaI0aGaeyypa0JaaGymaiaaiIdacaaIWaWdamaa CaaaleqabaWdbiabgclaWcaaaaa@5653@ or STC+AST= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEtr1qGSci9XvyUDgBLbci7f0uubspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam 4uaiaadsfacaWGdbGaey4kaSIaeyiiIaTaamyqaiaadofacaWGubGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5B33@ And

3+6= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMjevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGm di7bYkG0hxH52zSvgi2aYEG0diXGdmG0hi71NxCnwAYngiGShi9bWe xLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wBH5garm Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi=x H8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYR qj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabgcIiqlaaiodacq GHRaWkcqGHGic0caaI2aGaeyypa0JaaGymaiaaiIdacaaIWaWdamaa CaaaleqabaWdbiabgclaWcaaaaa@5653@ or BST+STD= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEcnfvGSci9XvyUDgBLbci7nfvebspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam OqaiaadofacaWGubGaey4kaSIaeyiiIaTaam4uaiaadsfacaWGebGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5B37@

Proof:

35 MathType@MTEF@5@5@+= feaagKart1ev2aaaMPcvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGm dxJ9MBNbcxH52zSvgi1aWexLMBbXgBcf2CPn2qVrwzqf2zLnharuav P1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0 evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=J c9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFv e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaa aaWdbiabgcIiqlaaiodacqGHfjcqcqGHGic0caaI1aaaaa@4A9C@ (Alternate angle theorem)….1

But

3+4=180 MathType@MTEF@5@5@+= feaagKart1ev2aaaMndvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEZaYkG0hxH52zSvgi0aYEG0diXGdm9bWexLMBbXgBcf2CPn2qVrwz qf2zLnharuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPv MCG4uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFf peea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq =JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaa keaaqaaaaaaaaaWdbiabgcIiqlaaiodacqGHRaWkcqGHGic0caaI0a Gaeyypa0JaaGymaiaaiIdacaaIWaaaaa@4F1D@ (Linear pair)……..2

5+4= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMjevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGu di7bYkG0hxH52zSvgi0aYEG0diXGdmG0hi71NxCnwAYngiGShi9bWe xLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wBH5garm Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi=x H8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYR qj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabgcIiqlaaiwdacq GHRaWkcqGHGic0caaI0aGaeyypa0JaaGymaiaaiIdacaaIWaWdamaa CaaaleqabaWdbiabgclaWcaaaaa@5653@ (From 1 and 2)

Or STC+AST= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEtr1qGSci9XvyUDgBLbci7f0uubspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam 4uaiaadsfacaWGdbGaey4kaSIaeyiiIaTaamyqaiaadofacaWGubGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5B33@

Hence proved.

Similarly, we can prove

BST+STD= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEcnfvGSci9XvyUDgBLbci7nfvebspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam OqaiaadofacaWGubGaey4kaSIaeyiiIaTaam4uaiaadsfacaWGebGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5B37@

 

 

 

Theorem 3: Converse of the theorem:

If a transversal intersects two lines such that a pair of angles on the same side of

transversal is supplementary then two lines are parallel.

 

 

Given:

Lines AB and {CD, PQ} is transversal.

AST+STC= 180 ° . MathType@MTEF@5@5@+= feaagKart1ev2aaaMHevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEbnfvGSci9XvyUDgBLbci7nfvdbspGedoWasFGSxFEX1yPj3yGaYE G0hiUaWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9 wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaiba ieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbb G8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaa baqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabgcIiql aadgeacaWGtbGaamivaiabgUcaRiabgcIiqlaadofacaWGubGaam4q aiabg2da9iaaigdacaaI4aGaaGima8aadaahaaWcbeqaa8qacqGHWc aSaaGccaGGUaaaaa@5C3F@

To prove :

AB is parallel to CD.

Proof:

AST+STC= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEbnfvGSci9XvyUDgBLbci7nfvdbspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam yqaiaadofacaWGubGaey4kaSIaeyiiIaTaam4uaiaadsfacaWGdbGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5B33@ (Given)…1

STC+CTQ= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMzevLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEtr1qGSci9XvyUDgBLbci7nevrbspGedoWasFGSxFEX1yPj3yGaYE G0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTf MBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqi VCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY= biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaa biGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeyiiIaTaam 4uaiaadsfacaWGdbGaey4kaSIaeyiiIaTaam4qaiaadsfacaWGrbGa eyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgclaWc aaaaa@5B33@ (Linear pair)….2

AST+STC=STC+CTQ MathType@MTEF@5@5@+= feaagKart1ev2aaaMffvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEbnfvGSci9XvyUDgBLbci7nfvdbspG0hxH52zSvgiGS3uuneiRasF CfMBNXwzGaYEdrvu9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1 wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0ev GueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiabgcIiqlaadgeacaWGtbGaamivaiabgUcaRiabgcIiqlaadofa caWGubGaam4qaiabg2da9iabgcIiqlaadofacaWGubGaam4qaiabgU caRiabgcIiqlaadoeacaWGubGaamyuaaaa@63CC@

AST=CTQ MathType@MTEF@5@5@+= feaagKart1ev2aaaMfdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEbnfvG0di9XvyUDgBLbci7nevr1hatCvAUfeBSjuyZL2yd9gzLbvy Nv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb ItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qq aqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pg eaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqa aabaaaaaaaaapeGaeyiiIaTaamyqaiaadofacaWGubGaeyypa0Jaey iiIaTaam4qaiaadsfacaWGrbaaaa@4FDA@

ABisparallelCD MathType@MTEF@5@5@+= feaagKart1ev2aaaMTcvLHfij5gC1rhimfMBNvxyNvga7fKq9bsAZb cCHjxySXwzSbciGS3qe1hatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerb uLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharq qtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9 pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9 vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaa aaaapeGaamyqaiaadkeacaWGPbGaam4CaiaadchacaWGHbGaamOCai aadggacaWGSbGaamiBaiaadwgacaWGSbGaam4qaiaadseaaaa@515D@ (By corresponding angle axiom).

 

 

 

Theorem 4:

Lines which are parallel to same line are parallel to each other.

 

Given:

Line l MathType@MTEF@5@5@+= feaagKart1ev2aaaMjcvLHfij5gC1rhimfMBNvxyNvga7XwFGacxWf MCHXgBLXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2D Gi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHb GeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8Wq FfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpW qaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiB aiablwIiqbaa@447E@ line m MathType@MTEF@5@5@+= feaagKart1ev2aaaMDbvLHfij5gC1rhimfMBNvxyNvga71wFamXvP5 wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvE Tj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipg Ylh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9 pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGTbaaaa@3F64@
Line l MathType@MTEF@5@5@+= feaagKart1ev2aaaMjcvLHfij5gC1rhimfMBNvxyNvga7XwFGacxWf MCHXgBLXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2D Gi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHb GeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8Wq FfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpW qaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiB aiablwIiqbaa@447E@ line n MathType@MTEF@5@5@+= feaagKart1ev2aaaMDbvLHfij5gC1rhimfMBNvxyNvga75wFamXvP5 wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvE Tj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipg Ylh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9 pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbaaaa@3F66@

To prove:

Line n MathType@MTEF@5@5@+= feaagKart1ev2aaaMjcvLHfij5gC1rhimfMBNvxyNvga75wFGacxWf MCHXgBLXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2D Gi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHb GeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8Wq FfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpW qaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOB aiablwIiqbaa@4482@ line m MathType@MTEF@5@5@+= feaagKart1ev2aaaMDbvLHfij5gC1rhimfMBNvxyNvga71wFamXvP5 wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvE Tj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipg Ylh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9 pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGTbaaaa@3F64@

Proof:

Line l MathType@MTEF@5@5@+= feaagKart1ev2aaaMjcvLHfij5gC1rhimfMBNvxyNvga7XwFGacxWf MCHXgBLXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2D Gi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHb GeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8Wq FfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpW qaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiB aiablwIiqbaa@447E@ line m MathType@MTEF@5@5@+= feaagKart1ev2aaaMDbvLHfij5gC1rhimfMBNvxyNvga71wFamXvP5 wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvE Tj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipg Ylh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9 pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGTbaaaa@3F64@

12 MathType@MTEF@5@5@+= feaagKart1ev2aaaMbdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEX0hxJ9MBNbcxH52zSvgiGSNm9bWexLMBbXgBcf2CPn2qVrwzqf2z LnharuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4 uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea 0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=Jbb G8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaa qaaaaaaaaaWdbiabgcIiqlaaigdacqGHfjcqcqGHGic0caaIYaaaaa@4CC8@ (Corresponding angle axiom)…..1

Line l MathType@MTEF@5@5@+= feaagKart1ev2aaaMjcvLHfij5gC1rhimfMBNvxyNvga7XwFGacxWf MCHXgBLXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2D Gi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHb GeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8Wq FfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpW qaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiB aiablwIiqbaa@447E@ line n MathType@MTEF@5@5@+= feaagKart1ev2aaaMDbvLHfij5gC1rhimfMBNvxyNvga75wFamXvP5 wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvE Tj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipg Ylh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9 pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbaaaa@3F66@

13 MathType@MTEF@5@5@+= feaagKart1ev2aaaM1cvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEX0hxJ9MBNbcxH52zSvgiZaWexLMBbXgBcf2CPn2qVrwzqf2zLnha ruavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3b qee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9 Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8 frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaa aaaaaaWdbiabgcIiqlaaigdacqGHfjcqcqGHGic0caaIZaaaaa@4BAF@ (Corresponding angle axiom)…2

23 MathType@MTEF@5@5@+= feaagKart1ev2aaaMPcvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGi dxJ9MBNbcxH52zSvgiZaWexLMBbXgBcf2CPn2qVrwzqf2zLnharuav P1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0 evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=J c9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFv e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaa aaWdbiabgcIiqlaaikdacqGHfjcqcqGHGic0caaIZaaaaa@4A96@ (From 1 and 2)

Line m MathType@MTEF@5@5@+= feaagKart1ev2aaaMjcvLHfij5gC1rhimfMBNvxyNvga71wFGacxWf MCHXgBLXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2D Gi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHb GeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8Wq FfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpW qaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyB aiablwIiqbaa@4480@ line n MathType@MTEF@5@5@+= feaagKart1ev2aaaMDbvLHfij5gC1rhimfMBNvxyNvga75wFamXvP5 wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvE Tj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipg Ylh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9 pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaai aabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbaaaa@3F66@ (Corresponding angle axiom).

 

 

 

Theorem 5:

If two parallel lines are intersected by a transversal bisectors of any pair of alternate interior angles are parallel.

[A1] 

Given:

ABCD MathType@MTEF@5@5@+= feaagKart1ev2aaaMDcvLHfij5gC1rhimfMBNvxyNvga7fKq9XfCHj xySXwzSbci7ner9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wz ZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGu eE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vq aqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fv e9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWd biaadgeacaWGcbGaeSyjIaLaam4qaiaadseaaaa@4846@

PQ is transversal.
MT is bisector of
STC. MathType@MTEF@5@5@+= feaagKart1ev2aaaMncvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEtr1q9bIlamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz 3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYf gasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXd d9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9 adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH Gic0caWGtbGaamivaiaadoeacaGGUaaaaa@46B5@

NS is bisector of TSB. MathType@MTEF@5@5@+= feaagKart1ev2aaaMncvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEunLq9bIlamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz 3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYf gasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXd d9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9 adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH Gic0caWGubGaam4uaiaadkeacaGGUaaaaa@46B3@

To prove: MT MathType@MTEF@5@5@+= feaagKart1ev2aaaM1bvLHfij5gC1rhimfMBNvxyNvgaCbxyYfgBSv gBamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wy UbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8 YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=h GuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaae GaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqWILicuaaa@41E4@ NS

Proof: Let

CTM=MTS=a MathType@MTEF@5@5@+= feaagKart1ev2aaaMvdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEdrvtG0di9XvyUDgBLbci71evtbspGewFamXvP5wqSXMqHnxAJn0B KvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1j xALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu 0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir =f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaab aaGcbaaeaaaaaaaaa8qacqGHGic0caWGdbGaamivaiaad2eacqGH9a qpcqGHGic0caWGnbGaamivaiaadofacqGH9aqpcaWGHbaaaa@52B8@

TSN=NSB=b MathType@MTEF@5@5@+= feaagKart1ev2aaaMvdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEunLtG0di9XvyUDgBLbci750ucbspGiwFamXvP5wqSXMqHnxAJn0B KvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1j xALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu 0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir =f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaab aaGcbaaeaaaaaaaaa8qacqGHGic0caWGubGaam4uaiaad6eacqGH9a qpcqGHGic0caWGobGaam4uaiaadkeacqGH9aqpcaWGIbaaaa@52BA@

STC=TSB MathType@MTEF@5@5@+= feaagKart1ev2aaaMfdvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEtr1qG0di9XvyUDgBLbci7r1uc1hatCvAUfeBSjuyZL2yd9gzLbvy Nv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb ItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qq aqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pg eaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqa aabaaaaaaaaapeGaeyiiIaTaam4uaiaadsfacaWGdbGaeyypa0Jaey iiIaTaamivaiaadofacaWGcbaaaa@4FE0@ (Alternate angles)

2a=2b MathType@MTEF@5@5@+= feaagKart1ev2aaaM1bvLHfij5gC1rhimfMBNvxyNvga7jtyG0diYi wFamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wy UbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8 YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=h GuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaae GaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIYaGaamyy aiabg2da9iaaikdacaWGIbaaaa@43FA@

a=b MathType@MTEF@5@5@+= feaagKart1ev2aaaMTbvLHfij5gC1rhimfMBNvxyNvga7fgi9aIy9b WexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wBH5ga rmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi =xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasP YRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaci GacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadggacqGH9aqp caWGIbaaaa@421C@

STM=BST. MathType@MTEF@5@5@+= feaagKart1ev2aaaMndvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEtrvtG0di9XvyUDgBLbci7j0uu1hiUaWexLMBbXgBcf2CPn2qVrwz qf2zLnharuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPv MCG4uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFf peea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq =JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaa keaaqaaaaaaaaaWdbiabgcIiqlaadofacaWGubGaamytaiabg2da9i abgcIiqlaadkeacaWGtbGaamivaiaac6caaaa@50F6@

BSTM MathType@MTEF@5@5@+= feaagKart1ev2aaaMDcvLHfij5gC1rhimfMBNvxyNvga7j0u9XfCHj xySXwzSbci7rvt9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wz ZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGu eE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vq aqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fv e9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWd biaadkeacaWGtbGaeSyjIaLaamivaiaad2eaaaa@489E@ (By alternate angle theorem)

 

 

 

Theorem 6 :Angle sum property

The sum of the angles of a triangle is 180 ° . MathType@MTEF@5@5@+= feaagKart1ev2aaaMfcvLHfij5gC1rhimfMBNvxyNvga7fdoW0NxCn wAYngiUaWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhi s9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyai baieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0x bbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dme aabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaaigda caaI4aGaaGima8aadaahaaWcbeqaa8qacqGHWcaSaaGccaGGUaaaaa@467C@

 

Given: in

ΔPQR,P,Q,Rarex,y,z. MathType@MTEF@5@5@+= feaagKart1ev2aaaMPfvLHfij5gC1rhimfMBNvxyNvgaCruzSrxyGa YEqfLu9bclGWvyUDgBLbci7bflG0hxH52zSvgiGSxuSasFCfMBNXwz GaYEs1hiHjxzGaYE4Xci5Xci61hiUaWexLMBbXgBcf2CPn2qVrwzqf 2zLnharuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMC G4uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=J bbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejaadcfacaWGrbGaamOuaiaacYcacqGH Gic0caWGqbGaaiilaiabgcIiqlaadgfacaGGSaGaeyiiIaTaamOuai aadggacaWGYbGaamyzaiaadIhacaGGSaGaamyEaiaacYcacaWG6bGa aiOlaaaa@6891@

To prove: x+y+z= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvga7HhiRasEGS ci6bspGedoWasFGSxFEX1yPj3yGaYEG0hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaamiEaiabgUcaRiaadMhacqGHRaWkcaWG6b Gaeyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgcla Wcaaaaa@5097@

Construction: Draw line parallel to QR passing through P

Proof:

a+b+x= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvga7fgiRaIyGS ci4bspGedoWasFGSxFEX1yPj3yGaYEG0hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaamyyaiabgUcaRiaadkgacqGHRaWkcaWG4b Gaeyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgcla Wcaaaaa@5037@ (Linear angles)…(1)

If PQ is transversal,

a=y MathType@MTEF@5@5@+= feaagKart1ev2aaaMTbvLHfij5gC1rhimfMBNvxyNvga7fgi9asE9b WexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wBH5ga rmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi =xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasP YRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaci GacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadggacqGH9aqp caWG5baaaa@424A@ (Alternate angles)…(2)

PR is transversal,

b=z MathType@MTEF@5@5@+= feaagKart1ev2aaaMTbvLHfij5gC1rhimfMBNvxyNvga7jgi9aIE9b WexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wBH5ga rmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi =xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasP YRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaci GacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadkgacqGH9aqp caWG6baaaa@424E@ (Alternate angles)…(3)

From 1, 2 and 3

y+x+z= 180 ° ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMPdvLHfij5gC1rhimfMBNvxyNvga7LhiRacEGS ci6bspGedoW4fxJLMCJbsFGSxFEX1yPj3yGaYEG0hatCvAUfeBSjuy ZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBae rbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeu Y=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepe ea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaa daqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgUcaRiaadIhacqGHRa WkcaWG6bGaeyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWd biabgclaWcaak8aadaahaaWcbeqaa8qacqGHWcaSaaaaaa@553A@

 

 

 

 

Theorem 7: Exterior angle theorem:

If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of two interior opposite angles.

Given:

inΔPQR,P,Q,Rarex,y,z. MathType@MTEF@5@5@+= feaagKart1ev2aaaM9fvLHfij5gC1rhimfMBNvxyNvgaP5giGWfrLX gDHbci7bvus1hiSacxH52zSvgiGShuSasFCfMBNXwzGaYErXci9Xvy UDgBLbci7jvFGeMCLbciGShESasESaIE9bIlamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEe eu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=d ir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaba abaaGcbaaeaaaaaaaaa8qacaWGPbGaamOBaiabfs5aejaadcfacaWG rbGaamOuaiaacYcacqGHGic0caWGqbGaaiilaiabgcIiqlaadgfaca GGSaGaeyiiIaTaamOuaiaadggacaWGYbGaamyzaiaadIhacaGGSaGa amyEaiaacYcacaWG6bGaaiOlaaaa@6BAE@

And PRS=a MathType@MTEF@5@5@+= feaagKart1ev2aaaMvcvLHfij5gC1rhimfMBNvxyNvgaCfMBNXwzGa YEqj1uG0diH1hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhi ov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4r NCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9 q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0= vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGa eyiiIaTaamiuaiaadkfacaWGtbGaeyypa0Jaamyyaaaa@4897@

To prove: a=x+y MathType@MTEF@5@5@+= feaagKart1ev2aaaM5bvLHfij5gC1rhimfMBNvxyNvga7fgi9acEGS sE9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhis9wB H5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie YlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8 FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaaba qaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadggacqGH 9aqpcaWG4bGaey4kaSIaamyEaaaa@44EF@

Proof: x+y+x= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMrdvLHfij5gC1rhimfMBNvxyNvga7HhiRasEGS ci4bspGedoWasFGSxFEX1yPj3yGaYEG0hatCvAUfeBSjuyZL2yd9gz LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9 v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0F b9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaa aOqaaabaaaaaaaaapeGaamiEaiabgUcaRiaadMhacqGHRaWkcaWG4b Gaeyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWdbiabgcla Wcaaaaa@5093@

(By angle sum property of triangle)…1

a+z= 180 ° MathType@MTEF@5@5@+= feaagKart1ev2aaaMbdvLHfij5gC1rhimfMBNvxyNvga7fgiRaIEG0 diXGdmG0hi71NxCnwAYngiGShi9bWexLMBbXgBcf2CPn2qVrwzqf2z LnharuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4 uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea 0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=Jbb G8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaa qaaaaaaaaaWdbiaadggacqGHRaWkcaWG6bGaeyypa0JaaGymaiaaiI dacaaIWaWdamaaCaaaleqabaWdbiabgclaWcaaaaa@4DA1@ (Linear pair)…2

x+y+z=a+z MathType@MTEF@5@5@+= feaagKart1ev2aaaMDcvLHfij5gC1rhimfMBNvxyNvga7HhiRasEGS ci6bspGegiRaIE9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wz ZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGu eE0jxyaibaieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vq aqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fv e9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWd biaadIhacqGHRaWkcaWG5bGaey4kaSIaamOEaiabg2da9iaadggacq GHRaWkcaWG6baaaa@4AA4@ (From 1 and 2)

x+y=a. MathType@MTEF@5@5@+= feaagKart1ev2aaaMfcvLHfij5gC1rhimfMBNvxyNvga7HhiRasEG0 diH1hiUaWexLMBbXgBcf2CPn2qVrwzqf2zLnharuavP1wzZbItLDhi s9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyai baieYlNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0x bbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dme aabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadIha cqGHRaWkcaWG5bGaeyypa0Jaamyyaiaac6caaaa@4612@

 


 

Start your learning Journey !

Tutormate-GooglePlaystore
Tutormate-AppleStore
Get SMS link to download the app