support@tutormate.in   022 6236 4602
 

Triangles

06 TRIANGLES

Similarity:

Two figures are similar if their shapes are same but size may not be the same.

e.g Tajmahal and model of Tajmahal

 

Similarity of triangles:

Two triangles Δ ABC and Δ PQR are similar

If    1) Their corresponding angles are equal i.e

A=P     ,B=Q ,  C=R

2) Their corresponding sides are in proportion i.e.

ABPQ=BCQR=ACPR
And we denote it by  ABC~PQR

Theorem 1:Basic proportionality Theorem:(Thale’s Theorem)

If a line is drawn parallel to one side of triangle intersecting the other two sides, then

it divides the two sides in the same ratio.

 

Given: A triangle ABC in which

, and DE intersects AB at D and AC at E.

TO PROVE: ADDB=AEAC
CONSTRUCTION: Join BE, CD and draw EF BA and DGCA  .
Proof :Area  (ABE) =12(base×height) =12(AD×EF)             :Area  (DBE) =12(base×height) =12(DB×EF)
Area(ADE)Area(DBE)=12(AD×EF)12(DB×EF)=ADDB.......(1)similarly, Area(ADE)Area(DEC)=12(AE×DG)12(EC×DG)=AEEC.......(2)
 Area(DBE)   = Area(DEC)   [triangles with the same base DE and between the same parallels DE and BC.]
1Area( DBE)=1Area( DEC) [Taking reciprocals]
Area (ADE)Area (DBE)=Area (ADE)Area (DEC)   [Multiplying by Area  ]
ADDB=AEEC      [Using( 1) and (2)]
COROLLARY: If in aABC  , a line DEBC , intersects AB at D and AC at E, then:    (i) ABAD=ACAE    (ii) ABDB=ACEC
PROOF (i)  ADDB =AEEC  [From the basic proportionality theorem]
DBAD=ECAE         [Taking reciprocals]
1+DBAD=1+ECAE  [Adding 1 on both sides]
AD+DBAD =AE+ECAE
ABAD=ACAE
(ii)  ADDB =AEEC   [From the basic proportionality theorem ] 
ADDB =AEEC  [Adding 1 on both sides]
AD+DBDB=AE+ECEC
ABDB=AEEC

THEOREM 2:(Converse of Basic Proportionality Theorem)

If a line divides any two sides of a triangle in the same ratio, then the line must be

Parallel  to the third side.

GIVEN: InABC   , a line DE intersecting AB and AC at D,E, respectively.
       ADDB=AEEC
TO PROVE : DE BC
PROOF:If possible, let DE be not parallel to BC.                Then, there must be another line parallel to BC.               
   Let DFBC
ADDB=AFFC     (BY BPT)    .....(i)
ButADDB=AEEC  (GIiven).......(ii)

From (i) and (ii), we get

AFFC=AEEC
 AFAC+1 =AEEC+1        [Adding 1 on both sides] 
ACFC=ACEC
EC=EC
This is possible only when F and E coincide But DFBC . Hence,DFBC .

THEOREM 3(Angle bisector theorem):

The internal bisector of an angle of a triangle divides the opposite side internally in

the ratio of the sides containing the angle.

GIVEN :In , AD is bisector of A  .
TO PROVE: BDDC =ABAC
CONSTRUCTION: Draw CEDA  .                                     Let CE meet BA produced in E.
PROOF: Since CEDA  and AC is transversal.
2=3   (i)   [Alternate angles]
and,1=4  (ii)  [corresponding angles]
But,1=2     [  AD is the bisector of A ]

From (i) and (ii), we get

3=4
Thus, in  ACE
AE =AC    (iii) [Sides opposite to equal angles are equal]
Now ,in BCE,DACE
BDDC=BAAE    [Using Basic Proportionality Theorem]
BDDC=ABAC        [AE=AC]
Hence ,BDDC=ABAC

THEOREM 4(Converse of angle bisector theorem):

In Triangle ABC, if D is a point on BC such that ,BDDC=ABAC
prove that AD is the bisector of A .
GIVEN:  In   ABC, in which D is a point on BC such that  BDDC=ABAC
TO PROVE:AD is the bisector of A .

CONSTRUCTION :Produce BA to E such that AE = AC. Join EC

PROOF:InABC  , we have             AE=AC
  3 =4

Now,

BDDC=ABAC
Thus, in BCE  , we have
BDDC=ABAE [ AC = AE]
   DACE (By converse of BPT)
1=4   (ii) [Corresponding angles]
and, 2=3  (iii) [Alternate angles]
But,3=4    [From (i)]
    1=2 ...... [From (ii) and (iii)]
Hence, AD is the bisector of A .

THEOREM 5:

If three or more parallel lines are intersected by two transversals, prove that the

intercepts made by them on the transversals are proportional.

 

GIVEN:Three parallel lines l, m, n which are cut by the transversals AB and CD at P, Q, R and E, F, G respectively.

TO PROVE:  PQQR=EFFG

CONSTRUCTION: join  PG.

PROOF:

PROOF:

IN PRG , QM RGPQQR=PMMG (i) (By Thalestheorem)
Now, in PEG , we have
FMPE
EFFG=PMMG  ..(ii) (By BPT) 
Hence , PQQR=EFFG.... [Using (i) and (ii)]

Criteria for similarities of triangles:

THEOREM6:(AAA Similarity Criterion):

If two triangles are equiangular, then they are similar.

GIVEN:Two triangles ABC and DEF such that  A =D,B=Eand C=F  
TO PROVE:ABC DEF          i.eABDE=BCEF=ACDF

PROOF:  We can have   AB=DE,,AB>DE,AB<DE

Case I: When AB = DE.

 

In this case, we have

 A=D,B=E,C=F  and  AB= DE
ABC DEF... (By ASA criterion of congruency)
 AB= DE , BC =EF and AC =DF
ABDE=BCEF=ACDF

Hence proved

Case II : When AB <DE  .

Take a point P on the line DE and Q on the line DF such that AB = DP and AC = DQ.

Join PQ.

In ABC  and  DPQ ,
AB = DP ,A= D ,AC = DQ
ABCDPQ   [By SAS criterion of congruence]
B = DPQ
but B = E=DEF
DPQ=DEF
PQEF         [ Corresponding angles are equal]
DPDE=DQDF           [By corollary of Thales Theorem]

Similarly, we can prove that

ABDE=BCEF
ABDE=BCEF=ACDF

Hence proved

Case III:When  AB > DE

Take a point P on the line DE produced and Q on the line DF produced

so  that DP = AB and DQ = AC.

Join PQ.

In ABC andDPQ , we have
AB= DP ,AC= DQ, A=D
ABC DPQ    [By SAS criterion of congruence]
D=DPQ
but   D=E=DEF
 PQEF      [  Corresponding angles are equal]
DEDP=DFDQ      [By corollary of Thales Theorem]
ABDE=ACDF

Similarly, we can prove that

ABDE=BCEF
ABDE=BCEF=ACDF

hence proved

THEOREM 7: (SSS Similarity Criterion)

If the corresponding sides of two triangles are proportional, then they are similar.

GIVEN : Two triangles ABC and DEF such that  ABDE=BCEF=ACDF
 TO PROVE: ABCDEF

CONSTRUCTION:Let P and Q be points on DE and DF respectively

such that DP = AB and DQ = AC.

Join PQ.

PROOF :We have,

ABDE=ACEF
DPDE=DQDF   [  AB = DP and AC = DQ]
PQEF [By the converse of Thales Theorem]
 DPQ =E and DPQ =F[Corresponding angles]

Thus, in triangles DPQ and DEF, we have

 DPQ =E and DPQ =F
DPQDEF  (AA criteria of similarity)
DPDE=PQEF   [By def. of similarity]
ABDE=PQEF    [  DP = AB]
PQ = BC
So in ABC  andDPQ  ,
AB = DP, AC = DQ and BC = PQ
AB = DP, AC = DQ and BC = PQ
ABCDPQ     (by SSS criterion of congruence)

From (i) and (ii), we have

ABCDPQ    and DPQ  DEF
ABCDEF

THEOREM 8(SAS similarity Criterion):

If in two triangles, one pair of corresponding sides are proportional and the

included angles are equal then the two triangles are similar.

GIVEN :In ABC  and DEF ,A=D and ABDE =ACDF
TO PROVE: ABCDEF

CONSTRUCTION: Take points P and Q on DE and DF respectively,so that

DP = AB and DQ = AC. Join PQ.

 

 

PROOF:In ABC  andDPQ , we have
AB = DP,  A=D and AC = DQ
ABC DPQ (i) .....  (by SAS Criterion of Congruence)
Now,  ABDE=ACDF   
DPDE=DQDF      [  AB = DP and AC = DQ]
PQEF     [By the converse of BPT]
DPQ =E  and DQP =F .....   [Corresponding angles]
DPQ DFQ

…(ii), (by AAA-criterion of similarity)

From (i) and (ii), we get

ABCDPQ and  DPQ  DEF
ABC DEF

Areas of similar triangles:

Theorem 9:

The ratio of areas of two similar triangles is equal to the square of the ratio of their

Corresponding sides

Given: Triangle ABC is similar to triangle PQR.

A= P
B=Q
C=R
ABPQ=ACPR=BCQR
To prove : A(ABC)A(PQR)=ABPQ2=ACPR2=BCPQ2
Construction: Draw AMBC  and PNQR  .

Proof:

Area of triangles  =12base ×height
A(ABC) =12BC ×AM
A(PQR) =12QR ×PN
A(ABC)A(PQR)= 12×BC×AM12×QR×PN =BC×AMQR×PN

…. (i)

InABM  and  PQN
B =Q......(GIVEN)
And  M =N   (as both 90, by construction)
 ABM  PQN   (by AA test) (from statements A and B)
ABPQ=BCQR=AMPN   .(ii)
A(ABC)A(PQR)=BC×AMQR×PN=BC×BCQR×QR=BCQR2

Similarly we can show for other side too.

A(ABC)A(PQR)=ABPQ2=BCQR2=ACPR2

Theorem 10:Theorem of three right angles triangles

 

If a perpendicular is drawn from the vertex of the right angle of a right angle

triangle to the hypotenuse then triangles on both sides of perpendicular are

similar to the whole triangle and each other.

Given:  BDAC ,in  ABC B =90
To prove:   ABCADBBDC

Proof:

Consider  ABC,ADB
A=A...... ...(Same angle)
ADB =ABC..... .(both 90)
ABCADB .(1 ) (by AA criteria) 
in ABC , BDC
C=C    (Same angle)
BDC=ABC...(both 90)
ABC ADC  (2)  (by AA criteria) 
HenceABC ADBBDC....   (From 1 and 2)

Theorem 11: Pythagoras theorem:

In a right angle triangle,the square of the hypotenuse is equal to the sum of

squares of other two sides.

Given: ABC , B =90°
To prove:   AC2= AB2+BC2
Construction: Draw  BD AC
Proof:As BD AC
ABCADBBDC....   (By theorem of 3 right triangles)
Consider  ABC ,ADB
Consider  ABC ,ADB
ABAD=BCBD=ACAB
ABAD=ACAB
AB2=AD×AC....(1)
Now consider   ABC BDC
ABBD=BCDC=ACBC
BCDC=ACBC
BC2=CD×AD ......(2)
=AC2
AB2+BC2=CD×AC+AD×AC
=AC(CD+AD)  ....) (Taking AC common)

Hence proved.

Theorem 12: Converse of Pythagoras theorem:

In a triangle, if square of one side is equal to the sum of squares of other two
sides, then the angle opposite the first side is a right angle.

Given: A ABC,  AC2 = AB2 + BC2
To Prove: B = 90
Construction: Construct  PQR ,PQ=AB, QR=BC and  Q = 90

Proof: In PQR we can apply Pythagoras theorem

So, PR2 = PQ2 + QR2
Or, PR2  = AB2 + BC2  ....................(1)(as by construction, PQ= AB , QR = BC)
But  AC2 = AB2 + BC2      .......................(2)(Given)

So AC = PR (from 1 and 2)

Now in ABC  and  PQR

AC = PR

PQ = AB,

QR = BC

 ABC = PQR  (by SSS test)
 Q = B
So,  B = 90

Proved..

Start your learning Journey !

Tutormate-googleplay
Tutormate-AppleStore
Get SMS link to download the app